7-(α-AMINOPHENYLACETAMIDO)-3-AZIDOMETHYL-3-CEPHEM-4-CARBOXYLIC ACID

DAVID WILLNER, CHARLES T. HOLDREGE, STEPHEN R. BAKER and LEE C. CHENEY

Research Division, Bristol Laboratories Division of Bristol-Myers Company Syracuse, New York 13201, U.S.A.

(Received for publication October 25, 1971)

Since the discovery of cephalosporin C (1) modifications were introduced into the molecule to yield several important drugs. These changes were made at the 7 and 3 positions of the cephem nucleus.¹⁾ Thus, the substitution of the D-aminoadipoyl group in 1 by a 2-thienylacetyl moiety yielded cephalothin.²⁾ Nucleophilic displacement of the acetoxy group in cephalothin yielded cephaloridine.³⁾ More recently, 7-aminocephalosporanic acid (7-ACA, 2)1,4) and 7amino-3-desacetoxycephalosporanic acid (3)⁵⁾ were acylated with D-phenylglycine to yield cephaloglycin⁶⁾ and cephalexin⁷⁾, respectively. Both compounds had good activity against gram-negative bacteria and were orally absorbed. It is likely that these characteristics are associated with the presence of the Dphenylglycyl moiety.

COCKER and coworkers⁸⁾ thoroughly investigated the nucleophilic displacement of the acetoxy group in N-acylated 7-ACA derivatives. Among the nucleophiles investigated was the azide ion. None of the compounds described by them had the Dphenylglycyl side chain. Our purpose was, therefore, to synthesize $7-(D-\alpha-\text{aminophe-}$ nylacetamido)-3-azidomethyl-3-cephem-4carboxylic acid (4)* and compare it with cephalexin.⁷⁾

Chemistry

Compound 4 was prepared by coupling D-BOC-phenylglycine with 7-amino-3-azidomethyl-3-cephem-4-carboxylic acid (5)9) via a mixed anhydride followed by removal of the protective BOC group. Racemization at the α -carbon of the amino acid was minimized or eliminated by using the conditions recommended by ANDERSON and coworkers.¹⁰⁾ We prepared the L-epimer of 4 (L-4) in order to estimate its concentration, if present, in the sample of 4. The L-epimer could be detected by nmr since several of its absorptions were different from those of the D-epimer (see experimental). In addition, we wanted to compare the microbiological activity of 4 with that of L-4. since it is well known that cephalosporins derived from D-amino acids are considerably more active than their L-epimers.

Antimicrobial Activity

The *in vitro* minimum inhibitory concentrations (MICs) of 4 and L-4 are compared with cephalexin in Table 1. The oral blood levels of 4 and cephalexin are compared in Table 2. The data indicate that 4 has good antimicrobial activity and is well absorbed orally in the mouse.

Experimental Section

Melting points were taken in capillaries on a Mel-Temp apparatus. Ir spectra were taken on a Beckman IR-5 Spectrophotometer. Nmr spectra were taken on Varian A-60 and HR-100 Spectrophotometers. Solvent evaporations were done under reduced pressure below 40°C.

^{*} After this work was completed, a British Complete Patent Specification 16593/1968 (1969) of Glaxo Laboratories Ltd. was published describing the benzylamine salt of **6**. Compound **4** was also mentioned but no description was given of its preparation or properties.

Table 1*					
Organism	Bristol No.	Cepha- lexin	4	L-4	
Diplococcus pneumoniae	A-9585	1.3	0.3	5	
Streptococcus pyogenes	A-9604	0.3	0.16	5	
Staphylococcus aureus Smith	A-9537	1.3	0.6	10	
S. aureus Smith+50 % serum	A-9537	2.5	1.3	>5	
S. aureus BX 1633-2	A-9606	2	0.6	32	
Salmonella enteritidis	A-9531	4	0.6	32	
E. coli Juhl	A-15119	8	2	125	
E. coli	A-9675	16	4	125	
Klebsiella pneumoniae	A-9977	2	2	63	
Klebsiella pneumoniae	A-15130	8	4	250	
Proteus mirabilis	A-9900	2	1	32	
P. morganii	A-15153	> 250	125	>250	
Pseudomonas aeruginosa	A-9843A	> 250	>250	>250	
Serratia marcescens	A-20019	>250	>250	250	

* The MIC values are in μ g/ml and were determined by the two-fold tube dilution method, essentially as described by A. GOUREVITCH and coworkers.¹² In the present experiments nutrient broth (Difco) was used as the test medium for all organisms except for *D. pneumoniae* and *S. pyogenes*. These two organisms were evaluated in a 1:1 mixture of nutrient broth and Antibiotic Assay broth (BBL) supplemented with 5% human serum.

Table 2. Oral mouse blood levels*

Minutes after administration	4	Cephalexin
30	5.63;9.43	8.48;8.51
60	3.5;4.03	4.9 ;6.03
120	1.55;0.7	1.14;2.0
210	0.73;0~0.38**	0~0.20** ; 0.68

* Compounds administered at the level of 20 mg/kg. Results are in µg/ml and are the average of 8 mice per experiment.

** Range of values.

7-Amino-3-azidomethyl-3-cephem-4-carboxylic Acid $(5)^{9}$. 7-ACA (13.6 g) was dissolved in 300 ml of H₂O by adding 4.2 g of NaHCO₃. After adjusting to pH 6.5 with 10 % NaOH, the solution was filtered through Celite. To this was added a solution of 16.25 g of NaN₃ in 50 ml of H₂O. The solution was stirred at 50°C for 19 hours at pH 6.5~6.7. The cooled (25°C) solution was acidified to pH3 with concentrated HCl. The mixture was stirred for 1 hour in ice, the solid collected by filtration and dried in vacuo giving 6.8 g, 54 %, of 5*. The ir and nmr spectra were consistent. Yields ranged from $30\sim$ 55 % in other experiments.

 $\frac{3-\text{Azidomethyl}-7-(\text{D}-\alpha-t-\text{butoxycarboxa-midophenylacetamido})-3-\text{cephem}-4-\text{carboxy-midophenylacetamido})}{3-\text{cephem}-4-\text{carboxy-midophenylacetamido})}$

lic Acid (6). To a vigorously stirred solution of 20.08 g of D-BOC-phenylglycine⁶⁾ in 500 ml of THF, protected from moisture at -15° C, was added 8.08 g of N-methylmorpholine and 11g of isobutyl chloroformate all at once. After stirring for 3 minutes, an icecold solution of 20.4 g of 5 and 8.08 g of N-methylmorpholine in 500 ml of H_2O was added at a rate to keep the temperature at $0 \sim 3^{\circ}$ C. The solution was allowed to warm to room temperature during 1 hour. After the THF was evaporated, 200 ml of H₂O and 500 ml of EtOAc were added and the cooled mixture was stirred and

acidified to pH2 with 42 % H₃PO₄. The layer was separated and the extraction repeated. The combined organic layers were washed (H₂O), dried (MgSO₄) and the solvent evaporated to a small volume. This solution was added dropwise to 2,500 ml of cyclohexane with stirring. The solid was collected by filtration and air dried. A tlc (Me₂CO: AcOH, 97:3) showed the presence of D-BOC-phenylglycine. The cyclohexane treatment was repeated until D-BOC-phenylglycine could not be detected by tlc; 28.13 g, 69.4 %, $[\alpha]_{D}^{26}+13.2^{\circ}$ (c 0.82, Me₂CO).

7-(D-α-Aminophenylacetamido)-3-azidomethyl-3-cephem-4-carboxylic Acid (4). A solution of 10 g of **6** in 250 ml of HCOOH was stirred at room temperature for 2 hours. The excess HCOOH was evaporated at 26~ 28°C (5 mm). The residue was treated thrice with toluene and evaporated to dryness each time. The residue was triturated with a mixture of 300 ml of H₂O and 300 ml of EtOAc. The solid was filtered, triturated with Me₂CO and dried; 5.7 g. An additional 0.46 g was obtained from the aqueous phase after washing it successively with EtOAc and Et₂O and concentrating to a small

^{*} The preparation of this compound should be carried out in a well ventilated hood, since HN_3 (as well as NaN_3) is extremely toxic. Early symptoms of exposure are sinus congestion and and a throbbing headache. In order to decompose the HN_3 present in the final filtrate, the solution was cooled in ice, strongly acidified with HCl and treated slowly with solid $NaNO_2$ until a persistent coloration was obtained with starch-iodine paper.

volume.

The crude 4 was purified via its TsOH salt in the following manner. To a suspension of 19.1 g of crude 4 in 200 ml of H₂O was added dropwise a solution of 11.41g of $TsOH \cdot H_2O$ in 40 ml of H_2O . A gummy precipitate formed immediately. The mixture was heated on a steam bath, then cooled to room temperature and the solution decanted. The remaining solid was extracted once more with H₂O. The combined extracts were stirred for 20 minutes with 2.8 g carbon, warmed to 50°C and filtered through Celite. The filtrate was concentrated until crystallization started and was chilled. The product was collected and air dried; 12.7 g. An additional 0.7 g was obtained by further concentrating the mother liquor. The material was recrystallized by dissolving 13g of the TsOH salt in 250 ml of H₂O at 60°C, carbon treating and concentrating to a small volume; 10 g. The ir and nmr spectra were consistent for the TsOH salt of 4. Anal. Calcd. for $C_{23}H_{24}N_6O_7S_2 \cdot 1/_2H_2O$: C, 48.49; H, 4.42; N, 14.76; H₂O, 1.58. Found: C, 48.28; H, 4.78; N, 15.10; H₂O, 1.96.

Pure 4 was obtained by dissolving 32.5 g of the TsOH salt in 325 ml of H₂O at 70°C. The solution was cooled and separated from oily material. The solution was heated to $50 \sim 55^{\circ}$ C and adjusted to pH 4.2 with NEt₃. Crystallization of 4 started immediately. The mixture was left at room temperature for $1 \frac{1}{2}$ hour and then $\frac{1}{2}$ hour at 0°C. The solid was collected, air dried and finally dried over P_2O_5 ; 14.9 g of needles, mp 240~ 250°C, $[\alpha]_{D}^{24}$ +97.4° (c 0.5, 0.1N HCl); ir (KBr) 2100 (N₃), 1770 (β -lactam), 1690, 1535 (CONH), 1600 (COO⁻) and $705 \,\mathrm{cm}^{-1}$ (C₆H₅); nmr $(D_2O \text{ and trace of DCl}; \text{ chemical shifts in})$ δ relative to TPS; splitting pattern, J, and identification of H given in brackets), 7.54 (s, C₆H₅), 5.77 (d, 4.5; 7-H), 5.10 (d, 4.5; 6-H), 5.28 (s, PhCHN), 4.43, 3.93 (2 d's, 14; CH₂N₃), 3.62, 3.36 (2 d's, 18; 2-H); Anal. Calcd. for $C_{16}H_{16}N_6O_4S$: C, 49.46; H, 4.15; N, 21.63. Found: C, 49.59; H, 4.34; N, 21.72.

<u>L-Epimer of 4.</u> The coupling was carried out as described for 4 between L-BOCphenylglycine⁶⁾ and 5. The intermediate L-6 was purified *via* its K salt, obtained by adding a solution of K 2-ethylhexanoate in n-BuOH to crude L-6 in EtOAC. Purified L-6 (10 g), $[\alpha]_{\rm D}^{25}$ +56.2° (c 0.5, Me₂CO) was added with good stirring to 50 ml of CF₃COOH at 10°C. After 15 minutes the solution was poured into an ice-cold mixture of Skellysolve B and anhydrous $Et_2O(2:1)$. The CF₃COOH salt was collected and dried over P_2O_5 ; 6.0 g. A solution of the CF₃COOH salt in 180 ml of H₂O and 50 ml of Amberlite LA-1 resin⁶⁾ in toluene* and 50 ml of toluene was stirred at room temperature for $1 \frac{1}{2}$ hour. Et₂O was added and the layers were separated. The organic layer was extracted with H₂O and the washing added to the aqueous phase. The aqueous solution was washed 8 times with Et₂O, filtered through Celite and concentrated. At a volume of 50 ml crystallization started. When completed, the solid was collected and dried over P₂O₅ giving 1.25 g of crystalline L-4; mp>180°C (dec.) $[\alpha]_{\rm D}^{25}$ +98.6° (c 0.5, 0.1 N HCl); ir consistent and the same as for 4; nmr 7.54 (s, C₆H₅), 5.56 (d, 4.5; 7-H), 5.18 (d, 4.5; 6-H), 5.29 (s, PhCHN), 4.49, 4.06 $(2 d's, 14; CH_2N_3), 3.75, 3.53 (2 d's, 18;$ 2-H); Anal. Calcd for $C_{16}H_{16}N_6O_4S \cdot H_2O$: C, 47.28; H, 4.46; N, 20.68; S, 7.89. Found: C, 47.48; H, 4.33; N, 19.92; S, 7.67. An additional crop of 0.75 g was obtained by concentrating the mother liquor.

Summary

The syntheses of the D and L epimers of 7- $(\alpha$ -aminophenylacetamido)-3-azidomethyl-3-cephem-4-carboxylic acid are described and their antimicrobial activity is compared with that of cephalexin. The D-epimer is active and orally absorbed.

Acknowledgements

The authors wish to thank the Microbiology Department for the antimicrobial data and the analytical and spectroscopic laboratories for their services.

References

 MORIN, R.B.; B.G. JACKSON, E.H. FLYNN & R.W.ROESKE: Chemistry of cephalosporin antibiotics. I. 7-Aminocephalosporanic acid from cephalosporin C. J. Am. Chem. Soc. 84: 3400~3401, 1962

* Toluene, instead of MIBK (ref. 6) was used in the preparation of the resin solution.

VOL. XXV NO. 1

- CHAUVETTE, R. R.; E.H. FLYNN, B.G. JACKSON, E. R. LAVAGNINO, R. B. MORIN, R.A. MUELLER, R. P. PIOCH, R. W. ROESKE, C. W. RYAN, J. L. SPENCER & E. M. VAN HEYNINGEN: Chemistry of cephalosporin antibiotics. II. Preparation of a new class of antibiotics and the relation of structure to activity. J. Am. Chem. Soc. 84: 3401~3402, 1962
- SPENCER, J. L.; F. Y. SIU, B. G. JACKSON, H. M. HIGGINS & E. H. FLYNN: Chemistry of cephalosporin antibiotics. IX. Synthesis of cephaloridine. J. Org. Chem. 30: 500~501, 1967
- 4) FECHTIG, B.; H. PETER, H. BICKEL & E. VISCHER: Modifikationen von Antibiotika. II. Über die Darstellung von 7-Aminocephalosporansäure. Helv. Chim. Acta 51: 1108~1119, 1968
- STEDMAN, R. J.; K. SWERED & J.R.E. HOOVER: 7-Aminodesacetoxycephalosporanic acid and its derivatives. J. Med. Chem. 7:117~119, 1964
- SPENCER, J. L.; E. H. FLYNN, R. W. ROESKE, F. Y. SIU & R. R. CHAUVETTE: Chemistry of cephalosporin antibiotics. VII. Synthesis

of cephaloglycin and some homologs. J. Med. Chem. 9:746~750, 1966

- RYAN, C. W.; R. L. SIMON & E. M. VAN HEY-NINGEN: Chemistry of cephalosporin antibiotics. XIII. Desacetoxycephalosporins. Synthesis of cephalexin and some analogs. J. Med. Chem. 12: 310~313, 1969
- COCKER, J. D.; B. R. COWLEY, J. S. G. COX, S. EARDLY, G. I. GREGORY, J. K. LAZENLY, A. G. LONG, J. C. P. SLY & G. A. SOMERFIELD: Cephalosporanic acids. II. Displacement of the acetoxy-group by nucleophiles. J. Chem. Soc. 1965 : 5015~5031, 1965
- WETHERILL, L. A.; W. GRAHAM & M.J. COVIL: Brit. Patent 1, 104, 938, 1968
- 10) ANDERSON, G. W.; J. E. ZIMMERMAN & F. M. CALLAHAN: A reinvestigation of the mixed carbonic anhydride method of peptide synthesis. J. Am. Chem. Soc. 89: 5012~5017. 1967
- GOUREVITCH, A.; G. A. HUNT, J. R. LUTTINGER, C. C. CARMACK & J. LEIN: Activity of αphenoxyalkyl penicillins against sensitive and resistant staphylococci. Proc. Soc. Exptl. Biol. Med. 107: 455~458, 1961